ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN, PALANI

DEPARTMENT OF MATHEMATICS

Learning Resources
Title of the paper: REAL ANALYSIS

Prepared By
Dr.K.Meena, Associate Professor and Head

ONE MARK QUESTIONS WITH ANSWERS

REAL ANALYSIS

1. Two sets A and B are equivalent if There exists a ----------from A to B
a) injection b) bijection c)surjection d) homomorphism. Ans: b) bijection
2. Let $N=\{1,2,3 \ldots n . .$.$\} and E=\{2,4, \ldots 2 n, \ldots\}$

The correct statement is \qquad a) N and E are equivalent sets
b) N and E are equal $s c) N$ and E are infinite sets d) N and E are finite sets Ans: a) N and E are equivalent sets
3. The incorrect statement from the following statement is \qquad
a) $E=\{2,4, \ldots 2 n . .$.$\} is a countable set$
b) Z is a countable set
c) \mathbf{N} is a countable set d) R is a countable set Ans: d) R is a countable set
4. The incorrect statement from the following statement is \qquad
a) NXN is a countable set
b) Q is a countable set
c) \mathbf{N} is a countable
set d) R is a countable set Ans: d) R is a countable set
5. The incorrect statement from the following statement is
a) $(0,1]$ is uncountable
b) $[0,1]$ is uncountable
c) Q is uncountable
d) $\{0\} \mathbf{U}\{1\} \mathbf{v}\{2\}$ is uncountable Ans: d) $\{0\} \mathbf{U}\{1\} \mathbf{v}\{2\}$ is uncountable
6. The set $\{2,4, \ldots 2 n . .$.$\} is ----- a) countable b) uncountable c) finite d)$ noneAns: a) countable
Say True or False
7. Every finite set can be equivalent to a proper subset of itself Ans: False
8. Every infinite set can be equivalent to a proper subset of itself Ans: True
9. A set A is said to be countably infinite if A is ----- to the natural numberN

Ans: equivalent
10. A is said to be countable if it is ----- Ans: finite or countably infinite
11. The countable set is
a) $[0,1]$
b) R
c) \mathbf{Q}
d) C Ans:
c) \mathbf{Q}
12. Q is \qquad in \mathbf{R}
a) open
b) closed
c) not open
d) uncountable Ans:
c) not open
13. In any metric space (M, d) the diameter of the empty set Φ is \qquad
a) 0
c) ∞
d) $-\infty$
Ans: $-\infty$
14. In a metric space (M,d) Let ACM. The diameter of A denoted as $d(A)$ is defined as ----
a) g.l.b $\{\mathbf{d}(\mathbf{x}, \mathbf{y}) / \mathbf{x}, \mathbf{y} \mathbf{A} \mathbf{A}\}$
b) l.u.b $\{d(x, y) / \mathbf{x}, \mathbf{y} \mathbf{A}\}$
c) g.l.b $\{d(\mathbf{x}, \mathbf{y}) / \mathbf{x} \boldsymbol{\epsilon} \mathbf{A}, \mathbf{y} \mathbf{\epsilon A}\}$
d) l.ub $\{\mathbf{d}(\mathbf{x}, \mathbf{y}) / \mathbf{x}, \mathbf{y} \mathbf{E A}\}$

Ans: b) l.u.b $\{\mathbf{d}(\mathbf{x}, \mathbf{y}) / \mathbf{x}, \mathbf{y} \in A\}$
15. The diameter of any non empty subset in a discrete metric space is \qquad
a) 0
b) ∞
c) $-\infty$
d) 1 Ans:
d) 1
16. In a discrete metric space M the diameter of $A=\{1,5,7,9\}$ is \qquad
a) 0
b) 1
c) 9
d) 8 Ans:
d) 8
17. In (R,d) The diameter of $[0,1] \cap[2,3]=$ \qquad
a) 0
b) $-\infty$
c) 4
d) 3
Ans: b)
$-\infty$
18. In R with usual metric for $a \in R$ open ball $B(a, r)=$ \qquad
a) (a-r,a+r)
b) $[a-r, a+r]$
c) $(a-r, a+r]$
d) $[a-r, a+r)$
Ans: a) (a-r,a+r)
19. In $[0,1]$ with usual metric for open ball $B(0,1 / 4)=$
a) $(-1 / 4,1 / 4)$
b) $[0,1 / 4)$
b) $[0,1 / 4)$
c) $(-1 / 4,0)$
d) $(0,1 / 4)$ Ans:
20. If M is In a discrete metric space Then $B(a, 2)=------$
a) $\{0\}$
b) \mathbf{M}
b) \mathbf{M}
c) Φ
d) 2 Ans:
21. In R with usual metric $[a, b)$ is
a)Closed b) open c) either closed or open d) neither closed nor open Ans: d) neither closed nor open
22. In R with usual metric every singleton set is ------Ans: closed
23. In R with usual metric every closed ball is a -------Ans: closed set
24. The set of irrational numbers in R is \qquad
a)Closed b) open c) complete d) dense Ans: d) dense
25. The set of all limit point s of A is called the \qquad
Ans: derived set
26. If $A=\{0,1,1 / 2,1 / 3, \ldots 1 / n, \ldots\}$ then the derived set of A denoted by $D(A)$
is ------ a) 1 b) $\{0\}$ c) A d) $\{0,1\}$ Ans: b) $\{0\}$
27. A subset A of a metric space M is said to be \qquad in M if $A=M$.

Ans: dense
28. A metric space M is said to seperable if -------Ans: there exists a countable dense subset in M.
Say True or False
29. A set is closed iff it contains all its limit points -Ans: True
30. A set A is closed iff $A=A$ Ans: True
31. In R with usual metric Q is dense Ans: True
32. R with discrete metric is seperable Ans: False
33. In a discrete metric space no proper subset is dense Ans: True
34. A metric space M is said to be complete if every Cauchy sequence in M
------------- Ans: converges to a point in M
35. The metric space $(0,1]$ with usual metric is \qquad
a) complete
b) not complete c) closed
d) none Ans:
b) not complete
36. A subset A of a complete metric space M is complete if A is \qquad
Ans: closed
37. State Baire's category theorem Ans: Any complete metric space is

Second category
Say True or False
38. A subspace of a complete metric space is complete. Ans: False
39. Any metric space which is of second category is complete. Ans: False
40. Any discrete metric space is of second category. Ans: True
41. If f is continuous function from a metric space M_{1} to a metric space
M_{2} then \qquad a) A is open in $M_{1}==f(A)$ is open in M_{2}
b) A is closed in $M_{1}==f(A)$ is closed in M_{2}
c) A is open in $M_{2}==>f^{-1}(A)$ is open in M_{1} d) If $A \underline{C M} M_{1}$, then $f(A)=f(A)$. Ans: $c) A$ is open in $M_{2}==>f^{11}(A)$ is open in M_{1}
42. Composition of two continuous function is ---- Ans: continuous
43. In usual metric there exists a continuous function from
a) $(0,1)$ onto $[0,1]$
b) $(\mathbf{0}, 1)$ onto R
c) $[0,1]$ onto $(0,1)$
d) $(\mathbf{0 , 1})$ onto Q

Ans: b) $(\mathbf{0}, 1)$ onto R
44. A function $f: M_{1} \rightarrow M_{2}$ is said to be an ----- if $f(G)$ is open in M_{2}
for every set G in continuous. Ans: open map
45. R with usual metric is not homomorphic to R with \qquad
Ans: discrete metric
46. A continuous function $f: M_{1} \rightarrow M_{2}$ need not be $----{ }^{-} \mathbf{M}_{1}$.

Ans: uniformly continuous

47. A function whose domain is a discrete metric space is \qquad
Ans: continuous
48. If $f: M_{1} \rightarrow M_{2}$ is a homeomorphism thenf is continuous and an ----Ans: open map
49. If $f: M_{1} \rightarrow M_{2}$ is a homeomorphism then f and f^{-1} are ----

Ans: continuous
50. If $f: M_{1} \rightarrow M_{2}$ is uniformly continuous on M_{1} then f is $\ldots-{ }^{---.}$

Ans: continuous at every point on M_{1}
51. If $f: M_{1} \rightarrow M_{2}$ is a homeomorphism then f^{-1} is $---{ }^{---}$

Ans: homeomorphism.
52. Any isometry from one metric space to another is a \qquad
Ans: homeomorphism.
53. If $f: R---->R$ defined by $f(x)=x^{2}$ is continuous but not $\ldots-----{ }^{-} R$.

Ans: uniformly continuous.

> Say True or False
54. If $f: R---->R$ defined by $f(x)=k x, x \in R$ uniformly continuous Ans: True
55. If $f:[0,1] \cdots---->R$ defined by $f(x)=x^{3}$ uniformly continuous.

Ans: True
56. Any open intervals in R are homeomorphic. Ans: True
57. If $f:[0,1] \cdots---->R$ defined by $f(x)=x^{2}$ uniformly continuous $[0,1]$. Ans: True
58. If $f: R---->R \& g: R---->R$ are uniformly continuous then $f g$ uniformly continuous . Ans: False
59. Any homeomorphism from one metric space to another is a isometry. Ans: False
60. If $f: M_{1} \rightarrow M_{2}$ is a continuous bijection then $f^{-1}: M_{2} \rightarrow M_{1}$ is also continuous. Ans: False
61. Let $[1,2] \cup[3,4]$ with usual metric Then M IS --------- a) connected
b) disconnected
c) compact d) none Ans:
b) disconnected
62. R is
a) compact b) connected
c) disconnected
d) noneAns:
c) disconnected
63. Any discrete metric space M with more than one point is \qquad
a) compact b) connected
c) disconnected
d) none Ans:
c) disconnected
64. M is connected iff every continuous function $f: M$ \qquad
\qquad Ans : not onto.
65. A subspace of R is connected iff \qquad Ans: it is an interval
66. A subspace of a connected metric space -a) connected
b) need not be connected c) is finite d) is countable .
Ans : b) need not be connected
67. Let f be real valued continuous function defined on an interval I. Then f takes every value between any two values it assumes. This statement is known as ---------- Ans: The intermediate value theorem.
68. If f is non-constant real valued continuous function on R Then the range of f is \qquad Ans: uncountable
69. $A=\left\{(x, y) / x^{2}+y^{2}=1\right\}$ is a $-\ldots----$ subset of $R^{2} A n s$: connected.
70. [0, 1] is ------------- subset of R with discrete metric a) connected
b) compact c) not a connected d) none Ans: not a connected
71. If A and C are connected subset of metric space M and if $A \underline{C} B \underline{C}$, Then B is ------- Ans: connected
72. Union of two connected sets --------Ans: need not be connected.
73. Which of the following is a connected subset of R with usual metric ?
a) N
b) R
b) R
c) $(0,1) \mathrm{U}(1,2)$
d) \mathbf{Z} Ans:

Say True or False
74. R is connected. Ans: True
75. Q is connected. Ans: False
76. A subspace of a connected subsets of a metric space M, then AuB is connected. Ans: False
78. If A and B are connected subsets of M and $A \cap B \neq \Phi$ then $A u B$ is connected .Ans: True
79. If M is a metric space and $x \in M$ then $\{x\}$ is a connected subset of M.

Ans: True
80. Continuous image of a connected set is connected. Ans: True
81. Which of the following is a compact subset of R with usual metric ?
a) N
b) R c) $[0,5]$
d) $\{1,1 / 2,1 / 3, \ldots 1 / n, \ldots\}$
Ans:
c) $[0,5]$
82. Which of the following is a compact metric space with usual metric ?
a) $R \quad b)(0,1)$ c) $[0, \infty)$
d) $[0,1]$ Ans: d) $[0,1]$
83. A closed subspace of a compact metric space is
-------Ans: compact.
84. If A and B are two compact subsets of a metric space M. Then $A u B$ is ---Ans: compact.
85. Write Heine Borel theorem

Ans: Any closed interval $[a, b]$ is a compact subset of R.
86. A subset A of R is compact iff ------ Ans: A is closed and bounded.
87. Let A be a subset of metric space M.If A is totally bounded then A is \qquad Ans: bounded.
88. Let A be totally bounded subset of R. Then A is --------Ans: compact.
89. Continuous image of a compact metric space is ----- Ans : compact.
90. Any infinite subset of a compact metric space has a \qquad
Ans: Limit point
91. Any continuous function defined on a compact metric space is \qquad
Ans: uniformly continuous.
92. Any closed and bounded subset of R is \qquad Ans: compact.
Say True or False
93. Any compact metric space is complete. Ans: True
94. Any totally bounded metric space is compact. Ans: False
95. Any closed and bounded subset of a metric space is compact. Ans: False
96. Any totally bounded and complete metric space is compact. Ans: True
97. A bounded infinite subset of \mathbf{R} has a limit point. Ans: True
98. Any totally bounded metric space is separable. Ans: True
99. Any compact metric space is separable. Ans: True
100. Any continuous real valued function defined on $[a, b]$ is bounded. Ans: True

Staff in charge

